宇宙的历史。

在宇宙暴胀结束之后,宇宙充满了夸克-胶子电浆。从此刻开始,早期宇宙的物理被了解的较多,而猜测的成分减少。

超对称破缺(理论推测)

编辑

主条目:超对称破缺

如果超对称性是我们宇宙的属性,那么它在能量低于1TeV的电弱对称尺度下时就必须被打破。质点的质量和它的超伴子质量不再是相等的,这可以解释为何从未观测到任何已知粒子的超伴子。

电弱对称破缺和夸克时期

编辑

在大爆炸之后10−12秒和10−6秒

主条目:希格斯机制和夸克时期

由于宇宙的温度低于非常高的特定高能量水准,它被相信希格斯场会自发地获得真空期望值,其中被破坏的电弱规范对称性产生了两个相关的影响:

弱力和电磁力各自的玻色子(W及Z玻色子和光子)在现今的宇宙中以不同的方式和不同的范围呈现;

通过希格斯机制,所有的基本粒子通过与希格斯场的交互作用成为质量,而在更高水准的能量下没有质量。

在这个时期的结束,引力、电磁力、强相互作用、和弱相互作用的基本相互作用已经呈现出现在的形态。但是,宇宙的温度仍然太高,夸克依然不能束缚在一起形成强子。

强子时期

编辑

在大爆炸之后10–6秒至1秒

主条目:强子时期

组成宇宙的夸克-胶子电浆继续冷却,直到重子,包括质子和中子的强子可以形成。这个时间大约在大爆炸后1秒钟,微中子退耦而开始可以在太空中自由的穿越。因为微中子的能量非常低,类似于在那很久以后发出的宇宙微波背景的宇宙微中子背景迄今未曾被观测到(见上文关于夸克-胶子浆,与下文的弦论时期)。然而,从大爆炸核合成预测的氦丰度和宇宙微波背景中的各向异性两者都是强烈的直接证据,证明宇宙微中子背景的存在。

轻子时期

编辑

在大爆炸之后1秒至10秒钟

主条目:轻子时期

在强子时期结束前,大多数的强子和反强子互相湮灭,留下轻子和反轻子主导宇宙的质量。大约在大爆炸之后10秒钟,宇宙的温度降低到新的轻子/反轻子对不再被创造,而大多数的轻子和反轻子也在湮灭反应中被消除,只留下少量残馀的轻子[16]。

光子时期

编辑

在大爆炸之后10秒钟至380,000年

主条目:光子时期

在轻子时期结束时,大多数的轻子和反轻子已经湮灭之后,宇宙的能量由光子主导。这些光子仍然频繁地与带电的质子、电子和(最终的)核发生交互作用,并且持续到后续的380,000年。

核合成

编辑

在大爆炸之后3分钟至20分钟[17]

主条目:太初核合成

宇宙的温度在光子时期下降至原子核开始可以形成。质子(氢原子核)和中子开始进行核融合结合成更大的原子核。自由的中子和质子形成氘,氘再迅速融合成氦-4。因为宇宙的温度与密度下降到了核融合无法继续的程度,核合成只持续了大约17分钟。这个时候,所有的中子都已经纳入氦原子核。留下的氢原子核质量3倍于氦原子核,和微量的其它的轻原子核。

物质主导

编辑

至大爆炸后70,000年

在这个时期,非相对论性的物质(原子核)与相对论性的辐射(光子)在密度上是相等的。金斯长度,所确定可以形成的最小结构(由于引力和压力之间竞争的影响),的数值开始下降并且扰动,但不是被自由流辐射消灭,而是在振幅上可以增长。

根据ΛCDM,冷暗物质在这个阶段占主导地位,铺平了引力塌缩来放大宇宙暴胀留下的微小不均匀性,使稠密的地方更稠密,稀薄的地方更稀薄。然而,因为目前的理论对暗物质的本质均未确定,它起源于更早的何时期也没有共识,只被视为现存的重子物质。

复合

编辑

大约在大爆炸之后377,000年

主条目:复合 (宇宙学)

用WMAP九年的资料(2012年),以我们的角度看宇宙微波背景辐射在整个宇宙的变化,实际变化会比图中显示得更为平顺[18][19]

氢和氦原子开始形成时,宇宙的密度继续降低。这一次被认为是发生在大爆炸之后的377,000年[20]。氢和氦开始时是在电离状态,也就是没有电子被束缚在原子核(带有正电荷的质子),因此带有电荷(分别是 +1和 +2)。当宇宙的温度持续冷却,电子被离子捕获,形成中性原子。这个过程相对来说是快速的(氦核比氢核快),被称为复合[21]。在复合结束后,宇宙中大部分的质子成为中性原子。因此,光子有效的平均自由路径几乎成为无限,光子现在可以在宇宙中通行无阻(请参阅汤姆森散射):宇宙变得透明。这个宇宙事件通常被称为退耦。

出现在退耦时间的光子与我们在宇宙微波背景辐射(CMB),经过宇宙膨胀大幅冷却之后的光子,是相同的光子。在相同的时间,存在于电子-重子电浆内的压力波 - 称为重子声学振荡 - 当物质凝结时它被嵌入内部分布著,引起略为倾向于大型物件的分配。因此,宇宙微波背景辐射图片中包括的微小波动是在暴胀期间结束时生成的(看图),在宇宙中展开的物件,像是星系,规模的相对值,随著整个宇宙发展的大小和时间推移[22]。

适居时期

编辑

参见:生命起源

生命的化学可能在大爆炸之后不久就开始了,138亿年前,适居时代的宇宙年龄只有1,000至1,700万年[23][24][25]。

黑暗时期

编辑

参见:21公分线

在退耦发生之前,宇宙中多数的光子都与电子和质子在光子-重子液中进行交互作用,其结果是宇宙是不透明或处在“大雾”之中。虽然有光,但不能通过望远镜看见。在宇宙中的重子物质包括电离的电浆,只有当它获得自由电子“复合”成中性,这才释放出光子创造了宇宙微波背景辐射(CMB)。当光子被释放(或退耦时),宇宙就变得透明。此时,唯一的辐射是中性氢的电子自旋释出的21公分氢线。这是目前低频电波阵列(LOFAR,Low-Frequency Array for Radio astronomy)努力进行检测的微弱辐射,原则上这会是一种更强大的工具,能研究比微波背景辐射更早期的宇宙。目前认为黑暗时期从大爆炸之后的1亿5000万年持续到8亿年。在2010年10月发现的UDFy-38135539是第一个被发现存在于再电离时期的星系,给了我们这个时期的视窗。观测到这个目前所知最早和最遥远星系的是荷兰莱顿大学的Richard J. Bouwens和Garth D. Illingsworth从UC天文台/利克天文台的纪录中筛选出来的。他们发现UDFj-39546284这个星系出现在在大爆炸之后4亿8000万年,距离是132亿光年,贯穿了宇宙的黑暗时期。最近发现的星系,UDFj-39546284,出现在大爆炸之后3亿8000万年,距离是133.7亿光年[26]。